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DECOMPOSITION OF THE RANDOM VARIABLE
WHOSE DISTRIBUTION IS THE RIESZ-NÁGY-TAKÁCS

DISTRIBUTION

In Soo Baek*

Abstract. We give a series of discrete random variables which
converges to a random variable whose distribution function is the
Riesz-Nágy-Takács (RNT) distribution. We show this using the
correspondence theorem that if the moments coincide then their
corresponding distribution functions also coincide.

1. Introduction

Usually the random variables are classified into the discrete random
variables and the absolutely continuous random variables. The discrete
random variable gives a jump function as its distribution function while
the absolutely continuous random variable gives an absolutely continu-
ous function as its distribution. The absolutely continuous function has
its derivative almost everywhere in the Lebesgue measure sense. More
precisely,

P (X ∈ B) =
∑

x∈B

p(x),

where p(x) = P (X = x) if X is a discrete random variable while

P (X ∈ B) =
∫

x∈B
f(x)dx,

where f(x) = F ′(x) and F (x) = P (X ≤ x) if X is an absolutely continu-
ous random variable. We note that the singular function is a continuous
strictly increasing function but its derivative is zero almost everywhere
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in the Lebesgue measure sense. If a random variable has the singular
function as its distribution function, it is neither discrete nor absolutely
continuous. More precisely, if F (x) = P (X ≤ x) is the singular function,
then

P (a < X ≤ b) =
∑

a<x≤b

p(x) = 0

if we assume that X is discrete, and

P (a < X ≤ b) =
∫

x∈(a,b]
f(x)dx = 0

if we assume that X is absolutely continuous, whereas

P (a < X ≤ b) = F (b)− F (a) > 0.

The Riesz-Nágy-Takács (RNT) function is such a singular function. It
is well-known that the distribution function is decomposed into 3 parts,
namely discrete and absolutely continuous and singular parts. More
precisely,

F (x) = Fd(x) + Fa(x) + Fs(x),

where Fd is a jump function and Fa is an absolutely continuous function
and Fs is a singular function. They also give the corresponding measure
µF , µFd

, µFa , µFs defined by µF ((a, b]) = F (b)−F (a) etc. The Lebesgue
decomposition theorem argues that µF = µ0 + µ1, where µ0 ¿ λ and
µ1 ⊥ λ for Lebesgue measure λ. In fact, µ0 = µFa and µ1 = µFd

+ µFs .
In this paper, we show that the random variable having the RNT

function as its distribution is the limit of a series whose terms are dis-
crete random variables. More precisely, the random variable Y whose
distribution is the RNT function F , that is F (x) = P (Y ≤ x) satisfies
Y = limn→∞ Yn, where Yn =

∑n
k=1 Xk for discrete random variables

Xk. We construct Xk according to the moment generating function
Mn(z) ≡ MYn(z) = E(ezYn).

2. Preliminaries

Consider a ∈ (0, 1) and t ∈ (0, 1). The Riesz-Nágy-Takács (RNT)
distribution F = Fa,t is defined on [0, 1] by F (0) = 0 and

(2.1) F (x) =
∑

j≥1

tmj

(
1− t

t

)j−1

, x ∈ (0, 1]
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where we represent x ∈ (0, 1] in the form

(2.2) x =
∑

j≥1

amj

(
1− a

a

)j−1

for some integers mi with 1 ≤ m1 < m2 < · · · < mn < · · · . We note
that if a 6= t, then Fa,t is a singular function, whereas it reduces to the
identity function for a = t.

Proposition 2.1. ([2]) The n-th moment cn of the RNT distribution
F = Fa,t satisfies the recurrence relation

(2.3) [1− tan − (1− t)(1− a)n]cn = (1− t)
n−1∑

j=0

(
n

j

)
an−j(1− a)jcj

for n ≥ 1, with c0 = 1.

3. Main results

Generating functions of one type or another are a standard device in
tackling recurrence relations. Thus, on introducing the moment expo-
nential generating function C(z) given by

(3.1) C(z) =
∑

n≥0

cnzn/n!

we can convert (2.3) to a functional equation for C(z):

(3.2) C(z)− tC(az) = (1− t)C((1− a)z)eaz.

While this too may be of limited value in terms of deriving an explicit
solution, it is sometimes possible to extract information on asymptotic
behaviour from functional equations.

Theorem 3.1.

C(z)− tC(az) = (1− t)C((1− a)z)eaz,

with

C(z) =
∑

n≥0

cnzn/n!,

where cn satisfy (2.3) for n ≥ 1, with c0 = 1.
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Proof. From the above Theorem, we have

(3.3) cn =
1− t

1− tan − (1− t)(1− a)n

n−1∑

j=0

(
n

j

)
an−j(1− a)jcj .

Noting C((1 − a)z) =
∑

n≥0 cn(1 − a)nzn/n! and eaz =
∑

n≥0 anzn/n!,
we have eazC((1− a)z) =

∑
n≥0 bnzn, where

bn =
n∑

j=0

cj(1− a)jan−j

j!(n− j)!
.

Noting C(az) =
∑

n≥0 cnanzn/n! from (3.1), and from (3.3)

bn =
cn(1− a)n

n!
+

n−1∑

j=0

cj(1− a)jan−j

j!(n− j)!
× n!

n!

=
cn(1− a)n

n!
+

cn

n!
× 1− tan − (1− t)(1− a)n

1− t

=
cn

n!
× 1− tan

1− t
,

we have
eazC((1− a)z) =

1
1− t

C(z)− t

1− t
C(az).

Hence it follows.

Corollary 3.2. For a = 1
2 ,

(3.4) C(z) =
∞∏

n=1

(t + (1− t)ez/2n
).

Proof. When a = 1
2 , we have

C(z) = tC(az) + (1− t)C((1− a)z)eaz = (t + (1− t)ez/2)C(
z

2
).

By induction with C(0) = 1, it follows.

From now on, we [1] consider the self-similar measure γ = γp on the
self-similar attractor [0, 1] having the n-th cylinder cn(π(ω)) for π(ω) ∈
[0, 1] = π(Ω), where Ω = {0, 1}N.

Lemma 3.3. Let Ω = {0, 1}N. Let ln(ω) be the left end point of
cn(π(ω)). Let Yn(ω) = X1(ω) + ... + Xn(ω) with Yn(ω) = ln(ω). Then
Xn(ω) = ln(ω)− ln−1(ω) for the integer n ≥ 2 with X1(ω) = l1(ω).

Proof. It follows from the construction of Yn(ω).
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Theorem 3.4. For a 6= b(= 1− a), we have

Xn(Ω) = {0, an, an−1b, an−2b2, ..., abn−1},
with P (Xn = 0) = p, P (Xn = an−kbk) =

(
n−1

k

)
pn−k−1qk+1 for 0 ≤

k ≤ n − 1 with q = 1 − p. Further for dk = lk(ω) − lk−1(ω), where
k ∈ {1, ..., n}

(3.5) P (X1 = x1, ..., Xn = xn) =

{
γ(cn(π(ω))), if xk = dk

0 otherwise
.

Proof. It follows from the definition of the self-similar measure γ = γp

on the self-similar attractor [0, 1] = π(Ω).

Theorem 3.5.

(3.6) Mn(z) =
∑

P (X1 = x1, ..., Xn = xn)ez(x1+...+xn).

Further

Mn(z) → C(z).

Proof. For p = t, (3.2) gives

C(z) = tC(az) + (1− t)eazC((1− a)z)

= t(tC(a2z) + (1− t)ea2zC((1− a)az)

+(1− t)eaz[tC(a(1− a)z) + (1− t)ea(1−a)zC((1− a)2z)]
= ...

with limn→∞C(akbn−kz) = C(0) = 1 for all z ∈ [0, 1]. It follows from
(3.5) and the above fact.

Theorem 3.6.
Yn → Y,

where Y has its distribution as F = Fa,p which is the RNT function.

Proof. It follows from the correspondence theorem with (3.6).

Theorem 3.7. For a = 1
2 , consider independent X1, ..., Xn satisfying

P (Xk = 0) = q and P (Xk = 1/2k) = p, where 1 ≤ k ≤ n for every
positive integer n . In this case, Y = limn→∞ Yn, where Yn(ω) = X1(ω)+
... + Xn(ω) has its distribution as F1/2,q which is the RNT function.

Proof. It follows from the monotone convergence theorem and the
correspondence theorem from (3.4).



426 In Soo Baek

References

[1] I. S. Baek, Dimensions of distribution sets in the unit interval, Comm. Kor.
Math. Soc. 22 (2007), 547-552.

[2] I. S. Baek, A note on the moments of the Riesz-Nágy-Takacs distribution, Jour-
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